
A New Analytical Technique for Designing

Provably Efficient MapReduce Schedulers

Yousi Zheng∗, Ness B. Shroff∗†, Prasun Sinha†

∗Department of Electrical and Computer Engineering
†Department of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210

Abstract—With the rapid increase in size and number of jobs
that are being processed in the MapReduce framework, efficiently
scheduling jobs under this framework is becoming increasingly
important. We consider the problem of minimizing the total flow-
time of a sequence of jobs in the MapReduce framework, where
the jobs arrive over time and need to be processed through
both Map and Reduce procedures before leaving the system. We
show that for this problem for non-preemptive tasks, no on-line
algorithm can achieve a constant competitive ratio (defined as the
ratio between the completion time of the online algorithm to the
completion time of the optimal non-causal off-line algorithm).
We then construct a slightly weaker metric of performance
called the efficiency ratio. An online algorithm is said to achieve
an efficiency ratio of γ when the flow-time incurred by that
scheduler divided by the minimum flow-time achieved over all
possible schedulers is almost surely less than or equal to γ. Under
some weak assumptions, we then show a surprising property
that, for the flow-time problem, any work-conserving scheduler
has a constant efficiency ratio in both preemptive and non-
preemptive scenarios. More importantly, we are able to develop
an online scheduler with a very small efficiency ratio (2), and
through simulations we show that it outperforms the state-of-
the-art schedulers.

I. INTRODUCTION

MapReduce is a framework designed to process massive

amounts of data in a cluster of machines [1]. Although it was

first proposed by Google [1], today, many other companies

including Microsoft, Yahoo, and Facebook also use this frame-

work. Currently this framework is widely used for applications

such as search indexing, distributed searching, web statistics

generation, and data mining.

MapReduce has two elemental processes: Map and Reduce.

For the Map tasks, the inputs are divided into several small

sets, and processed by different machines in parallel. The

output of Map tasks is a set of pairs in <key, value> format.

The Reduce tasks then operate on this intermediate data,

possibly running the operation on multiple machines in parallel

to generate the final result.

Each arriving job consists of a set of Map tasks and Reduce

tasks. The scheduler is centralized and responsible for making

decisions on which task will be executed at what time and on

which machine. The key metric considered in this paper is the

total delay in the system per job, which includes the time it

takes for a job, since it arrives, until it is fully processed. This

includes both the delay in waiting before the first task in the

This work has been supported in part by the Army Research Office MURI
Award W911NF-08-1-0238.

job begins to be processed, plus the time for processing all

tasks in the job.

A critical consideration for the design of the scheduler is

the dependence between the Map and Reduce tasks. For each

job, the Map tasks need to be finished before starting any

of its Reduce tasks1 [1], [3]. Various scheduling solutions

has been proposed within the MapReduce framework [2]–[6],

but analytical bounds on performance have been derived only

in some of these works [2], [3], [6]. However, rather than

focusing directly on the flow-time, for deriving performance

bounds, [2], [3] have considered a slightly different problem

of minimizing the total completion time and [6] has assumed

speed-up of the machines. Further discussion of these sched-

ulers is given in Section II.

In this paper, we directly analyze the performance of total

delay (flow-time) in the system. In an attempt to minimize

this, we introduce a new metric to analyze the performance of

schedulers called efficiency ratio. Based on this new metric,

we analyze and design several schedulers, which can guarantee

the performance of the MapReduce framework.

The contributions of this paper are as follows:

• For the problem of minimizing the total delay (flow-

time) in the MapReduce framework, we show that no on-

line algorithm can achieve a constant competitive ratio.

(Sections III and IV)

• To directly analyze the total delay in the system, we

propose a new metric to measure the performance of

schedulers, which we call the efficiency ratio. (Sec-

tion IV)

• Under some weak assumptions, we then show a surpris-

ing property that for the flow-time problem any work-

conserving scheduler has a constant efficiency ratio in

both preemptive and non-preemptive scenarios (precise

definitions provided in Section III). (Section V)

• We present an online scheduling algorithm called ASRPT

(Available Shortest Remaining Processing Time) with a

very small (less than 2) efficiency ratio (Section VI),

and show that it outperforms state-of-the-art schedulers

through simulations (Section VII).

II. RELATED WORK

In Hadoop [7], the most widely used implementation, the

default scheduling method is First In First Out (FIFO). FIFO

1Here, we consider the most popular case in reality without the Shuffle
phase. For discussion about the Shuffle phase, see Section II and [2].

2

suffers from the well known head-of-line blocking problem,

which is mitigated in [4] by using the Fair scheduler.

In the case of the Fair scheduler [4], one problem is that jobs

stick to the machines on which they are initially scheduled,

which could result in significant performance degradation. The

solution of this problem given by [4] is delayed scheduling.

However, the fair scheduler could cause a starvation prob-

lem (please refer to [4], [5]). In [5], the authors propose a

Coupling scheduler to mitigate this problem, and analyze its

performance.

In [3], the authors assume that all Reduce tasks are non-

preemptive. They design a scheduler in order to minimize the

weighted sum of the job completion times by determining the

ordering of the tasks on each processor. The authors show that

this problem is NP-hard even in the offline case, and propose

approximation algorithms that work within a factor of 3 of

the optimal. However, as the authors point out in the article,

they ignore the dependency between Map and Reduce tasks,

which is a critical property of the MapReduce framework.

Based on the work of [3], the authors in [2] add a precedence

graph to describe the precedence between Map and Reduce

tasks, and consider the effect of the Shuffle phase between

the Map and Reduce tasks. They break the structure of the

MapReduce framework from job level to task level using the

Shuffle phase, and seek to minimize the total completion time

of tasks instead of jobs. In both [3] and [2], the schedulers

use an LP based lower bound which need to be recomputed

frequently. However, the practical cost corresponding to the

delay (or storage) of jobs are directly related to the total flow-

time, not the completion time. Although the optimal solution

is the same for these two optimization problems, the efficiency

ratio obtained from minimizing the total flow-time will be

much looser than the efficiency ratio obtained from minimizing

the total completion time (details are shown in technical report

[8]).

In [6], the authors study the problem of minimizing the total

flow-time of all jobs. They propose an O(1/ǫ5) competitive

algorithm with (1 + ǫ) speed for the online case, where 0 <
ǫ ≤ 1. However, speed-up of machines is necessary in the

algorithm; otherwise, there is no guarantee on the competitive

ratio (if ǫ decreases to 0, the competitive ratio will increase

to infinity correspondingly).

III. SYSTEM MODEL

Consider a data center with N machines. We assume that

each machine can only process one job at a time. A machine

could represent a processor, a core in a multi-core processor

or a virtual machine. Assume that there are n jobs arriving

into the system. We assume the scheduler periodically collects

the information on the state of jobs running on the machines,

which is used to make scheduling decisions. Such time slot

structure can efficiently reduce the performance degeneration

caused by data locality (see [4] [9]). We assume that the

number of job arrivals in each time slot is i.i.d., and the

arrival rate is λ. Each job i brings Mi units of workload

for its Map tasks and Ri units of workload for its Reduce

tasks. Each Map task has 1 unit of workload2, however, each

Reduce task can have multiple units of workload. Time is

slotted and each machine can run one unit of workload in

each time slot. Assume that {Mi} are i.i.d. with expectation

M , and {Ri} are i.i.d. with expectation R. We assume that the

traffic intensity ρ < 1, i.e., λ < N

M+R
. Assume the moment

generating function of workload of arriving jobs in a time slot

has finite value in some neighborhood of 0. In time slot t
for job i, mi,t and ri,t machines are scheduled for Map and

Reduce tasks, respectively. As we know, each job contains

several tasks. We assume that job i contains Ki tasks, and the

workload of the Reduce task k of job i is R
(k)
i . Thus, for any

job i,
Ki
∑

k=1

R
(k)
i = Ri. In time slot t for job i, r

(k)
i,t machines

are scheduled for the Reduce task k. As each Reduce task

may consist of multiple units of workload, it can be processed

in either preemptive or non-preemptive fashion based on the

type of scheduler.

Definition 1. A scheduler is called preemptive if Reduce tasks

belonging to the same job can run in parallel on multiple

machines, can be interrupted by any other task, and can be

rescheduled to different machines in different time slots.

A scheduler is called non-preemptive if each Reduce task

can only be scheduled on one machine and, once started, it

must keep running without any interruption.

In any time slot t, the number of assigned machines must

be less than or equal to the total number of machines N , i.e.,
n
∑

i=1

(mi,t + ri,t) ≤ N, ∀t.

Let the arrival time of job i be ai, the time slot in which

the last Map task finishes execution be f
(m)
i , and the time slot

in which all Reduce tasks are completed be f
(r)
i .

For any job i, the workload of its Map tasks should be

processed by the assigned number of machines between time

slot ai and f
(m)
i , i.e.,

f
(m)
i
∑

t=ai

mi,t = Mi, ∀i ∈ {1, ..., n}.

For any job i, if t < ai or t > f
(m)
i , then mi,t = 0. Simi-

larly, for any job i, the workload of its Reduce tasks should be

processed by the assigned number of machines between time

slot f
(m)
i +1 and f

(r)
i , i.e.,

f
(r)
i
∑

t=f
(m)
i +1

ri,t = Ri, ∀i ∈ {1, ..., n}.

Since any Reduce task of job i cannot start before the

finishing time slot of the Map tasks, if t < f
(m)
i +1 or t > f

(r)
i ,

then ri,t = 0.

The waiting and processing time Si,t of job i in time slot

t is represented by the indicator function 1{

ai≤t≤f
(r)
i

} . Thus,

we define the delay cost as
∞
∑

t=1

n
∑

i=1

Si,t, which is equal to

n
∑

i=1

(

f
(r)
i − ai + 1

)

. The flow-time Fi of job i is equal to

f
(r)
i − ai + 1. The objective of the scheduler is to determine

2Because the Map tasks are independent and have small workload [5], such
assumption is valid.

3

the assignment of jobs in each time slot, such that the cost of

delaying the jobs or equivalently the flow-time is minimized.

For the preemptive scenario, the problem definition is as

follows:

min
mi,t,ri,t

n
∑

i=1

(

f
(r)
i − ai + 1

)

s.t.

n
∑

i=1

(mi,t + ri,t) ≤ N, ri,t ≥ 0, mi,t ≥ 0, ∀t,

f
(m)
i
∑

t=ai

mi,t = Mi,

f
(r)
i

∑

t=f
(m)
i +1

ri,t = Ri, ∀i ∈ {1, ..., n}.

(1)

In the non-preemptive scenario, the Reduce tasks cannot

be interrupted by other jobs. Once a Reduce task begins

execution on a machine, it has to keep running on that machine

without interruption until all its workload is finished. Also, the

optimization problem in this scenario is similar to Eq. (1), with

additional constraints representing the non-preemptive nature,

as shown below:

min
mi,t,r

(k)
i,t

n
∑

i=1

(

f
(r)
i − ai + 1

)

s.t.

n
∑

i=1

(mi,t +

Ki
∑

k=1

r
(k)
i,t) ≤ N, ∀t,

f
(m)
i
∑

t=ai

mi,t = Mi, mi,t ≥ 0, ∀i ∈ {1, ..., n},

f
(r)
i

∑

t=f
(m)
i +1

r
(k)
i,t = R

(k)
i , ∀i ∈ {1, ..., n}, ∀k ∈ {1, ..., Ki},

r
(k)
i,t = 0 or 1, r

(k)
i,t = 1 if 0 <

t−1
∑

s=0

r
(k)
i,s < R

(k)
i .

(2)

Theorem 1. The scheduling problem (both preemptive and

non-preemptive) is NP-complete in the strong sense.

Proof: The proof of NP-completeness follows a fairly

standard reduction from 3-Partition and is described in tech-

nical report [8].

IV. EFFICIENCY RATIO

The competitive ratio is often used as a measure of per-

formance in a wide variety of scheduling problems. For our

problem, the scheduling algorithm S has a competitive ratio

of c, if for any total time T , any number of arrivals n in the T
time slots, any arrival time ai of each job i, any workload Mi

and Ri of Map and Reduce tasks with respect to each arrival

job i, the total flow-time FS(T, n, {ai, Mi, Ri; i = 1...n}) of

scheduling algorithm S satisfies the following:

FS(T, n, {ai, Mi, Ri; i = 1...n})

F ∗(T, n, {ai, Mi, Ri; i = 1...n})
≤ c, (3)

where

F ∗(T, n, {ai, Mi, Ri; i = 1...n})

=min
S

FS(T, n, {ai, Mi, Ri; i = 1...n}),
(4)

is the minimum flow time of an optimal off-line algorithm.

For our problem, we construct an arrival pattern such that

no scheduler can achieve a constant competitive ratio c in the

following example.

Consider the simplest example of non-preemptive scenario

in which the data center only has one machine, i.e., N = 1.

There is a job with 1 Map task and 1 Reduce task. The

workload of Map and Reduce tasks are 1 and 2Q + 1,

respectively. Without loss of generality, we assume that this

job arrives in time slot 1. We can show that, for any given

constant c0, and any scheduling algorithm, there exists a

special sequence of future arrivals and workload, such that

the competitive ratio c is greater than c0.

For any scheduler S, we assume that the Map task of the

job is scheduled in time slot H + 1, and the Reduce task is

scheduled in the (H + L + 1)st time slot (H, L ≥ 0). Then

the Reduce task will last for 2Q + 1 time slots because the

Reduce task cannot be interrupted. This scheduler’s operation

is given in Fig. 1(a). Observe that any arbitrary scheduler’s

operation can be represented by choosing appropriate values

for H and L possibilities: H + L > 2(c0 − 1)(Q + 1) + 1 or

H + L ≤ 2(c0 − 1)(Q + 1) + 1.

Case I: H + L > 2(c0 − 1)(Q + 1) + 1.

Consider the arrival pattern in which only this unique job

arrives in the system. Under this arrival pattern, the flow-time

of S is L+2Q+1. Now, consider another scheduler S1, which

schedules the Map task in the first time slot, and schedules

the Reduce task in the second time slot. The operation of the

scheduler S1 is depicted in Fig. 1(b), and the flow-time of S1

is 2Q + 2. So, the competitive ratio c of S must satisfy the

following:

c ≥
H + L + 2Q + 1

2Q + 2
> c0. (5)

Case II: H + L ≤ 2(c0 − 1)(Q + 1) + 1.

Let us consider an arrival pattern in which Q additional jobs

arrive in time slots H +L+2, H +L+4, ..., H +L+2Q. The

Map and Reduce workload of each arrival is 1. Then for the

scheduler S, the total flow-time is greater than (H +L+2Q+
1)+(2Q+1)Q, no matter how the last Q jobs are scheduled.

The scheduler S is shown in Fig. 1(c).

Now, we construct a scheduler S2, which schedules the Map

function of the first arrival in the same time slot as S, and

schedules the last Q arrivals before scheduling the Reduce task

of the first arrival. The scheduler S2 is shown in Fig. 1(d).

Then, for the scheduler S, the competitive ratio c satisfies

the following:

4

(a) Case I: Scheduler S (b) Case I: Scheduler S1

(c) Case II: Scheduler S (d) Case II: Scheduler S2

Fig. 1. The Quick Example

c ≥
(H + L + 2Q + 1) + (2Q + 1)Q

2Q + (H + L + 2Q + 2Q + 1)

≥
(2Q + 1)(Q + 1)

6Q + 1 + (2(c0 − 1)(Q + 1) + 1)

>
(2Q + 1)(Q + 1)

2(c0 + 2)(Q + 1)
>

Q

c0 + 2
.

(6)

By selecting Q > c2
0 +2c0, using Eq. 6, we can get c > c0.

Thus, we show that for any constant c0 and scheduler S,

there are sequences of arrivals and workloads, such that the

competitive ratio c is greater than c0. In other words, in this

scenario, there does not exist a constant competitive ratio c.

This is because the scheduler does not know the information

of future arrivals, i.e., it only makes causal decisions. In fact,

even if the scheduler only knows a limited amount of future

information, it can still be shown that no constant competitive

ratio will hold by increasing the value of Q.

We now introduce a slightly weaker notion of performance,

called the efficiency ratio.

Definition 2. We say that the scheduling algorithm

S has an efficiency ratio γ, if the total flow-time

FS(T, n, {ai, Mi, Ri; i = 1...n}) of scheduling algorithm S
satisfies the following:

lim
T→∞

FS(T, n, {ai, Mi, Ri; i = 1...n})

F ∗(T, n, {ai, Mi, Ri; i = 1...n})
≤ γ, with probability 1.

(7)

Later, we will show that for the quick example, a constant

efficiency ratio γ still can exist (e.g., the non-preemptive

scenario with light-tailed distributed Reduce workload in Sec-

tion V).

V. WORK-CONSERVING SCHEDULERS

In this section, we analyze the performance of work-

conserving schedulers in both preemptive and non-preemptive

scenarios.

A. Preemptive Scenario

We first study the case in which the workload of Reduce

tasks of each job is bounded by a constant, i.e., there exists a

constant Rmax, s.t., Ri ≤ Rmax, ∀i.

Theorem 2. In the preemptive scenario, any work-

conserving scheduler has a constant efficiency ratio
B2+B2

1

max{2,
1−p0

λ
,

ρ
λ}max{1, 1

N(1−ρ)}
, where p0 is the probability that

no job arrives in a time slot, and B1 and B2 are given in

Eqs. (8) and (9).

B1 = min
ǫ∈(0,N−λ(M+R))















1 + ⌈
(N − 1)Rmax

ǫ
⌉

+
2el(N−ǫ) − 1

el(N−ǫ)(el(N−ǫ) − 1)2















, (8)

B2 = min
ǫ∈(0,N−λ(M+R))



















(

1 + ⌈
(N − 1)Rmax

ǫ
⌉

)2

+
4e2l(N−ǫ) − 3el(N−ǫ) + 1

el(N−ǫ)(el(N−ǫ) − 1)3



















,

(9)

where the rate function l(a) is defined as

l(a) = sup
θ≥0

(

θa − log(E[eθWs])
)

. (10)

Proof: (Proof Sketch) We briefly outline the basic idea

of the proof. The full details are given in technical report [8].

Consider the total scheduled number of machines over all

the time slots. If all the N machines are scheduled in a time

slot, we call this time slot a “developed” time slot; otherwise,

we call this time slot a “developing” time slot. We define

the jth “interval” to be the interval between the (j − 1)st

developing time slot and the jth developing time slot. (We

5

Fig. 2. An example schedule of a work-conserving scheduler

define the first interval as the interval from the first time slot

to the first developing time slot.) Thus, the last time slot of

each interval is the only developing time slot in the interval.

Let Kj be the length of the jth interval, as shown in Fig. 2.

Observe that in each interval, all the job arrivals in this

interval must finish their Map tasks in this interval, and all

their Reduce tasks will be finished before the end of the

next interval. In other words, for all the arrivals in the jth

interval, the Map tasks are finished in Kj time slots, and the

Reduce tasks are finished in at most Kj + Kj+1 time slots.

For example, job 3 arriving in interval K2 finishes the Map

task in K2 but the Reduce task is finished in K3.

If the scheduler is work-conserving, then for any given num-

ber H , there exists a constant BH , such that E[KH
j] < BH ,

∀j, where BH is given by:

BH , min
ǫ∈(0,N−λ(M+R))



















(

1 + ⌈
(N − 1)Rmax

ǫ
⌉

)H

+
∞
∑

k=2

kHe−kl(N−ǫ)



















.

(11)

Thus, E[Kj] is bounded by a constant B1, E[K2
j] is

bounded by a constant B2, for any j. By adding some dummy

Reduce workload in the beginning slot of each interval, the

constant efficiency ratio can be achieved by using Strong Law

of Large Number (SLLN).

B. Non-preemptive Scenario

Theorem 3. In the non-preemptive scenario, any work-

conserving scheduler has a constant efficiency ratio
B2+B2

1+B1(R−1)

max{2,
1−p0

λ
,

ρ
λ}max{1, 1

N(1−ρ)}
, where p0 is the probability that

no job arrives in a time slot, and B1 and B2 are given in

Eqs. (8) and (9).

Proof: The outline of the proof is similar to the proof of

Theorem 2. The key difference in this scenario is that for job

i, which arrives in the jth interval, its Map tasks are finished

in Kj time slots, and its Reduce tasks are finished in Kj +
Kj+1 + Ri − 1 time slots, as shown in Fig. 3. More details

are given in technical report [8].

Fig. 3. The job i, which arrives in the jth interval, finishes its Map tasks
in Kj time slots and Reduce tasks in Kj + Kj+1 + Ri − 1 time slots.

Remark 1. In Theorems 2 and 3, we can relax the assumption

of boundedness for each Reduce job and allow them to follow

a light-tailed distribution, i.e., a distribution on Ri such that

∃r0, such that P (Ri ≥ r) ≤ α exp (−βr), ∀r ≥ r0, ∀i,
where α, β > 0 are two constants. We obtain similar results

to Theorem 2 and 3 with different expressions. More details

are given in technical report [8].

Remark 2. Although any work-conserving scheduler has a

constant efficiency ratio, the constant efficiency ratio may be

large (because the result is true for “any” work-conserving

scheduler). We further discuss algorithms to tighten the con-

stant efficiency ratio in Section VI.

VI.

AVAILABLE-SHORTEST-REMAINING-PROCESSING-TIME

(ASRPT) ALGORITHM AND ANALYSIS

In the previous sections we have shown that any arbitrary

work-conserving algorithm has a constant efficiency ratio, but

the constant can be large as it is related to the size of the

jobs. In this section, we design an algorithm with much tighter

bounds that does not depend on the size of jobs. Although, the

tight bound is provided in the case of preemptive jobs, we also

show via numerical results that our algorithm works well in

the non-preemptive case.

Before presenting our solution, we first describe a known

algorithm called SRPT (Shortest Remaining Processing Time)

[10]. SRPT assumes that Map and Reduce tasks from the

same job can be scheduled simultaneously in the same slot.

In each slot, SRPT picks up the job with the minimum total

remaining workload, i.e., including Map and Reduce tasks, to

schedule. Observe that the SRPT scheduler may come up with

an infeasible solution as it ignores the dependency between

Map and Reduce tasks.

Lemma 1. Without considering the requirement that Reduce

tasks can be processed only if the corresponding Map tasks

are finished, the total flow-time FS of Shortest-Remaining-

Processing-Time (SRPT) algorithm is a lower bound on the

6

total flow-time of MapReduce framework.

Proof: Without the requirement that Reduce tasks can be

processed only if the corresponding Map tasks are finished,

the optimization problem in the preemptive scenario will be

as follows:

min
mi,t,ri,t

n
∑

i=1

(

f
(r)
i − ai + 1

)

s.t.

n
∑

i=1

(mi,t + ri,t) ≤ N, ri,t ≥ 0, mi,t ≥ 0, ∀t,

f
(r)
i

∑

t=ai

(mi,t + ri,t) = Mi + Ri, ∀i ∈ {1, ..., n}.

(12)

The readers can easily check that

n
⋃

i=1







f
(r)
i

∑

t=ai

mi,t + ri,t = Mi + Ri







⊃

n
⋃

i=1











{

f
(m)
i
∑

t=ai

mi,t = Mi

}

∩

{

f
(r)
i

∑

t=f
(m)
i +1

ri,t = Ri,

}











.

(13)

Thus, the constraints in Eq. (12) are weaker than constraints

in Eq. (1). Hence, the optimal solution of Eq. (12) is less than

the optimal solution of Eq. (1). Since we know that the SRPT

algorithm can achieve the optimal solution of Eq. (12) [10],

then its total flow-time FS is a lower bound of any scheduling

method in the MapReduce framework. Since the optimization

problem in the non-preemptive scenario has more constraints,

the lower bound also holds for the non-preemptive scenario.

A. ASRPT Algorithm

Based on the SRPT scheduler, we present our greedy

scheme called ASRPT. We base our design on a very simple

intuition that by ensuring that the Map tasks of ASRPT finish

as early as SRPT, and assigning Reduce tasks with smallest

amount of remaining workload, we can hope to reduce the

overall flow-time. However, care must be taken to ensure that

if Map tasks are scheduled in this slot, then the Reduce tasks

are scheduled after this slot.

ASRPT works as follows. ASRPT uses the schedule com-

puted by SRPT to determine its schedule. In other words,

it runs SRPT in a virtual fashion and keeps track of how

SRPT would have scheduled jobs in any given slot. In the

beginning of each slot, the list of unfinished jobs J , and

the scheduling list S of the SRPT scheduler are updated.

The scheduled jobs in the previous time slot are updated

and the new arriving jobs are added to the list J in non-

decreasing order of available workload in this slot. In the list

J , we also keep the number of schedulable tasks in this time-

slot. For a job that has unscheduled Map tasks, its available

workload in this slot is the units of unfinished workload of

both Map and Reduce tasks, while its schedulable tasks are

the unfinished Map tasks. Otherwise, its available workload is

the unfinished Reduce workload, while its schedulable tasks

are the unfinished workload of the Reduce tasks (preemptive

scenario) or the number of unfinished Reduce tasks (non-

preemptive scenario), respectively. Then, the algorithm assigns

machines to the tasks in the following priority order (from high

to low): the previously scheduled Reduce tasks which are not

finished yet (only in the non-preemptive scenario), the Map

tasks which are scheduled in the list S, the available Reduce

tasks, and the available Map tasks. For each priority group, the

algorithm greedily assign machines to the corresponding tasks

through the sorted available workload list J . The pseudo-code

of the algorithm is shown in Algorithm 1.

B. Efficiency Ratio Analysis of ASRPT Algorithm

We first prove a lower bound on its performance. The lower

bound is based on the SRPT. For the SRPT algorithm, we

assume that in time slot t, the number of machines which

are scheduled to Map and Reduce tasks are MS
t and RS

t ,

respectively.

Now we construct a scheduling method called Delayed-

Shortest-Remaining-Processing-Time (DSRPT) for MapRe-

duce framework based on the SRPT algorithm. We keep the

scheduling method for the Map tasks exactly same as in SRPT.

For the Reduce tasks, they are scheduled in the same order

from the next time slot compared to SRPT scheduling. An

example showing the operation of SRPT, DSRPT and ASRPT

is shown in Fig. 4.

Theorem 4. In the preemptive scenario, DSRPT has an

efficiency ratio 2.

Proof: We construct a queueing system to represent the

DSRPT algorithm. In each time slot t ≥ 2, there is an

arrival with workload RS
t−1, which is the total workload of the

delayed Reduce tasks in time slot t− 1. The service capacity

of the Reduce tasks is N −MS
t , and the service policy of the

Reduce tasks is First-Come-First-Served (FCFS). The Reduce

tasks which are scheduled in previous time slots by the SRPT

algorithm are delayed in the DSRPT algorithm up to the time

of finishing the remaining workload of delayed tasks. Also,

the remaining workload Wt in the DSRPT algorithm will be

processed first, because the scheduling policy is FCFS. Let

Dt be the largest delay time of the Reduce tasks which are

scheduled in the time slot t − 1 in SRPT.

In the construction of the DSRPT algorithm, the remaining

workload Wt is from the delayed tasks which are scheduled in

previous time slots by the SRPT algorithm, and MS
s≥t is the

workload of Map tasks which are scheduled in the future time

slots by the SRPT algorithm. Hence, they are independent.

We assume that D′
t is the first time such that Wt ≤ N −Ms,

where s ≥ t. Then Dt ≤ D′
t.

If a time slot t0 − 1 has no workload (except the Rt0−1

which is delayed to the next time slot) left to the future, we

call t0 the first time slot of the interval it belongs to. (Note that

the definition of interval is different from Section V.) Assume

that P (Wt0 ≤ N − Ms) = P (Rt0−1 ≤ N − Ms) = p, where

7

(a) SRPT (b) DSRPT (c) ASRPT

Fig. 4. The construction of schedule for ASRPT and DSRPT based on the schedule for SRPT. Observe that the Map tasks are scheduled in the same way.
But, roughly speaking, the Reduce tasks are delayed by one slot.

s ≥ t0. Since Rs ≤ N−Ms, then p ≥ P (Rt0−1 ≤ Rs) ≥ 1/2.

Thus, we can get that

E[Dt0] ≤ E[D′
t0

] =
∞
∑

k=1

kp(1 − p)k−1 =
1

p
≤ 2. (14)

Note that N−Ms ≥ Rs for all s, then the current remaining

workload Wt ≤ Wt0 . Then, E[Dt] ≤ E[Dt0] ≤ 2.

Then, for all the Reduce tasks, the expectation of delay

compared to the SRPT algorithm is not greater than 2. Let D

has the same distribution with Dt. Thus, the total flow-time

FD of DSRPT algorithm satisfies

lim
T→∞

FD

FS

≤
lim

n→∞

FS

n
+ E[D]

lim
n→∞

FS

n

w.p.1

=1 +
E[D]

lim
n→∞

FS

n

≤ 1 + E[D] ≤ 3.

(15)

For the flow time F of any feasible scheduler in the

MapReduce framework, we have

lim
T→∞

FD

F
≤

lim
n→∞

FS

n
+ E[D]

lim
n→∞

F
n

w.p.1

≤1 +
E[D]

lim
n→∞

F
n

≤ 1 +
E[D]

2
≤ 2.

(16)

Corollary 1. From the proof of Theorem 4, the total flow-time

of DSRPT is not greater than 3 times the lower bound given

by Lemma 1 with probability 1, when n goes to infinity.

Corollary 2. In the preemptive scenario, the ASRPT scheduler

has an efficiency ratio 2.

Proof: For each time slot, all the Map tasks finished by

DSRPT are also finished by ASRPT. For the Reduce tasks of

each job, the jobs with smaller remaining workload will be

finished earlier than the jobs with larger remaining workload.

Hence, based on the optimality of SRPT, ASRPT can be

viewed as an improvement of DSRPT. Thus, the total flow-

time of ASRPT will not be greater than DSRPT. So, the

efficiency ratio of DSRPT also holds for ASRPT.

Note that, the total flow-time of ASRPT is not greater than

3 times of the lower bound given by Lemma 1 with probability

1, when n goes to infinity. We will show this performance in

the next section. Also, the performance of ASRPT is analyzed

in the preemptive scenario in Corollary 2. We will show

that ASRPT performs better than other schedulers in both

preemptive and non-preemptive scenarios via simulations in

the next section.

VII. SIMULATION RESULTS

A. Simulation Setting

We evaluate the efficacy of our algorithm ASRPT for

both preemptive and non-preemptive scenarios. We consider

a data center with N = 100 machines, and choose Pois-

son process with arrival rate λ = 2 jobs per time slot as

the job arrival process. We choose uniform distribution and

exponential distribution as examples of bounded workload

and light-tailed distributed workload, respectively. For short,

we use Exp(µ) to represent an exponential distribution with

mean µ, and use U [a, b] to represent a uniform distribution on

{a, a + 1, ..., b − 1, b}. We choose the total time slots to be

T = 500, and the number of tasks in each job is up to 10.

We compare 3 typical schedulers to the ASRPT scheduler:

The FIFO scheduler: It is the default scheduler in Hadoop.

All the jobs are scheduled in their order of arrival.

The Fair scheduler: It is a widely used scheduler in Hadoop.

The assignment of machines are scheduled to all the waiting

jobs in a fair manner. However, if some jobs need fewer

machines than others in each time slot, then the remaining

machines are scheduled to the other jobs, to avoid resource

wastage and to keep the scheduler work-conserving.

The LRPT scheduler: Jobs with larger unfinished workload

are always scheduled first. Roughly speaking, the performance

of this scheduler represents in a sense how poorly even some

work-conserving schedulers can perform.

8

Algorithm 1 Available-Shortest-Remaining-Processing-Time

(ASRPT) Algorithm for MapReduce Framework

Input: List of unfinished jobs (including new arrivals in this slot) J
Output: Scheduled machines for Map tasks, scheduled machines for

Reduce tasks, updated remaining jobs J
1: Update the scheduling list S of SRPT algorithm without task

dependency. For job i, S(i).MapLoad is the corresponding
scheduling of the Map tasks in SRPT.

2: Update the list of jobs with new arrivals and machine assignments
in the previous slot to maintain a non-decreasing order of the
available total workload J(i).AvailableWorkload. Also, keep
the number of schedulable tasks J(i).SchedulableTasksNum
for each job in the list.

3: d← N ;
4: if The scheduler is a non-preemptive scheduler then
5: Keep the assignment of machines which are already scheduled

to the Reduce tasks previously and not finished yet;
6: Update d, the idle number of machines;
7: end if
8: for i = 1→ |J | do
9: if i has Map tasks which is scheduled in S then

10: if J(i).SchedulabeTasksNum ≥ S(i).MapLoad then
11: if S(i).MapLoad ≤ d then
12: Assign S(i).MapLoad machines to the Map tasks of

job i;
13: else
14: Assign d machines to the Map tasks of job i;
15: end if
16: else
17: if J(i).SchedulabeTasksNum ≤ d then
18: Assign J(i).SchedulabeTasksNum machines to

the Map tasks of job i;
19: else
20: Assign d machines to the Map tasks of job i;
21: end if
22: end if
23: Update status of job i in the list of jobs J ;
24: Update d, the idle number of machines;
25: end if
26: end for
27: for i = 1→ |J | do

28: if ith job still has unfinished Reduce tasks then
29: if J(i).SchedulabeTasksNum ≤ d then
30: Assign J(i).SchedulabeTasksNum machines to the

Reduce tasks of job i;
31: else
32: Assign d machines to the Reduce tasks of job i;
33: end if
34: Update d, the idle number of machines;
35: end if
36: if d = 0 then
37: RETURN;
38: end if
39: end for
40: for i = 1→ |J | do

41: if ith job still has unfinished Map tasks then
42: if J(i).SchedulabeTasksNum ≤ d then
43: Assign J(i).SchedulableTasksNum machines to the

Map tasks of job i;
44: else
45: Assign d machines to the Map tasks of job i;
46: end if
47: Update d, the idle number of machines;
48: end if
49: if d = 0 then
50: RETURN;
51: end if
52: end for

0

2

4

6

8

ASRPT Fair FIFO LRPT

E
ff
ic

ie
n
c
y
 R

a
ti
o

(a) Preemptive Scenario

0

2

4

6

8

10

ASRPT Fair FIFO LRPT

E
ff

ic
ie

n
c
y
 R

a
ti
o

(b) Non-Preemptive Scenario

Fig. 5. Efficiency Ratio (Exponential Distribution, Large Reduce)

0

2

4

6

8

ASRPT Fair FIFO LRPT

E
ff

ic
ie

n
c
y
 R

a
ti
o

(a) Preemptive Scenario

0

2

4

6

8

ASRPT Fair FIFO LRPT

E
ff

ic
ie

n
c
y
 R

a
ti
o

(b) Non-Preemptive Scenario

Fig. 6. Efficiency Ratio (Exponential Distribution, Small Reduce)

B. Efficiency Ratio

In the simulations, the efficiency ratio of a scheduler is

obtained by the total flow-time of the scheduler over the

lower bound of the total flow-time in T time slots. Thus,

the real efficiency ratio should be smaller than the efficiency

ratio given in the simulations. However, the proportion of all

schedulers would remain the same.

First, we evaluate the exponentially distributed workload.

We choose the workload distribution of Map for each job as

Exp(5) and the workload distribution of Reduce for each job

as Exp(40). The efficiency ratios of different schedulers are

shown in Fig. 5. For different workload, we choose workload

distribution of Map as Exp(30) and the workload distribution

of Reduce as Exp(15). The efficiency ratios of schedulers are

shown in Fig. 6.

Then, we evaluate the uniformly distributed workload. We

choose the workload distribution of Map for each job as

U [1, 9] and the workload distribution of Reduce for each job

as U [10, 70]. The efficiency ratios of different schedulers are

shown in Fig. 7. To evaluate for a smaller Reduce workload,

we choose workload distribution of Map as U [10, 50] and the

workload distribution of Reduce as U [10, 20]. The efficiency

ratios of different schedulers are shown in Fig. 8.

As an example, we show the convergence of efficiency ratios

in Fig. 9, where the workload distribution of Map as U [10, 50]
and the workload distribution of Reduce as U [10, 20]. More

simulations of convergence are shown in technical report [8].

From Figures. 5-8, we can see that the total flow-time of

0

1

2

3

4

ASRPT Fair FIFO LRPT

E
ff

ic
ie

n
c
y
 R

a
ti
o

(a) Preemptive Scenario

0

2

4

6

8

ASRPT Fair FIFO LRPT

E
ff

ic
ie

n
c
y
 R

a
ti
o

(b) Non-Preemptive Scenario

Fig. 7. Efficiency Ratio (Uniform Distribution, Large Reduce)

9

0

1

2

3

4

ASRPT Fair FIFO LRPT

E
ff
ic

ie
n
c
y
 R

a
ti
o

(a) Preemptive Scenario

0

1

2

3

4

5

ASRPT Fair FIFO LRPT

E
ff

ic
ie

n
c
y
 R

a
ti
o

(b) Non-Preemptive Scenario

Fig. 8. Efficiency Ratio (Uniform Distribution, Small Reduce)

0 100 200 300 400 500
1

2

3

4

5

Total Time (T)

E
ff
ic

ie
n
c
y
 R

a
ti
o

ASRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 100 200 300 400 500
1

2

3

4

5

Total Time (T)

E
ff

ic
ie

n
c
y
 R

a
ti
o

ASRPT

Fair

FIFO

LRPT

(b) Non-Preemptive Scenario

Fig. 9. Convergence of Efficiency Ratios (Uniform Distribution, Small
Reduce)

ASRPT is much smaller than all the other schedulers. Also,

as a “bad” work-conserving, the LRPT scheduler also has a

constant (maybe relative large) efficiency ratio, from Fig. 9.

C. Cumulative Distribution Function (CDF)

For the same setting and parameters, the CDFs of flow-

times are shown in Fig. 10-13. We plot the CDF only for

flow-time up to 100 units. From these figures, we can see

that the ASRPT scheduler has a very light tail in the CDF of

flow-time, compared to the FIFO and Fair schedulers. In other

words, the fairness of the ASRPT scheduler is similar to the

FIFO and Fair schedulers. However, the LRPT scheduler has

a long tail in the CDF of flow time. In the other words, the

fairness of the LRPT scheduler is not as good as the other

schedulers.

VIII. CONCLUSION

In this paper, we study the problem of minimizing the

total flow-time of a sequence of jobs in the MapReduce

framework, where the jobs arrive over time and need to be

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 10. CDF of Schedulers (Exponential Distribution, Large Reduce)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 11. CDF of Schedulers (Exponential Distribution, Small Reduce)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 12. CDF of Schedulers (Uniform Distribution, Large Reduce)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Flow Time

C
D

F

ASRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 13. CDF of Schedulers (Uniform Distribution, Small Reduce)

processed through Map and Reduce procedures before leaving

the system. We show that no on-line algorithm can achieve

a constant competitive ratio for non-preemptive tasks. We

define weaker metric of performance called the efficiency

ratio and propose a corresponding technique to analyze on-line

schedulers. Under some weak assumptions, we then show a

surprising property that for the flow-time problem any work-

conserving scheduler has a constant efficiency ratio in both

preemptive and non-preemptive scenarios. More importantly,

we are able to find an online scheduler ASRPT with a very

small efficiency ratio. The simulation results show that the

efficiency ratio of ASRPT is much smaller than the other

schedulers, while the fairness of ASRPT is as good as others.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of Sixth Symposium on Operating System

Design and Implementation, OSDI, pp. 137–150, December 2004.
[2] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of processing

and shuffle phases in mapreduce systems,” in Proceedings of IEEE

Infocom, March 2012.
[3] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee,

and S. Mukherjee, “Scheduling in mapreduce-like systems for fast
completion time,” in Proceedings of IEEE Infocom, pp. 3074–3082,
March 2011.

[4] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Job sechduling for multi-user mapreduce clusters,” tech. rep.,
University of Califonia, Berkley, April 2009.

[5] J. Tan, X. Meng, and L. Zhang, “Performance analysis of coupling
scheduler for mapreduce/hadoop,” in Proceedings of IEEE Infocom,
March 2012.

[6] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos, “On scheduling in
map-reduce and flow-shops,” in Proceedings of the 23rd ACM sympo-

sium on Parallelism in algorithms and architectures, SPAA, pp. 289–298,
June 2011.

[7] “Hadoop, http://hadoop.apache.org/.”
[8] Y. Zheng, P. Sinha, and N. Shroff, “Performance Analysis of Work-

Conserving Scheduler in Minimizing Flowtime Problem with Two-
Stages Precedence,” tech. rep., Ohio State University, June 2012. http:
//www2.ece.ohio-state.edu/∼zhengy/TR3.pdf.

[9] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems, EuroSys, pp. 265–278, April 2010.

[10] K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling.
Hoboken, NJ, USA: John Wiley & Sons, 2009.

